

POZNAN UNIVERSITY OF TECHNOLOGY INSTITUTE OF BUILDING ENGINEERING DIVISION OF BUILDING AND BUILDING MATERIALS

BUILDING CHEMISTRY LAB 4 REACTION KINETICS

Names						
Group	Date					
1. Procedure						

POZNAN UNIVERSITY OF TECHNOLOGY INSTITUTE OF BUILDING ENGINEERING DIVISION OF BUILDING AND BUILDING MATERIALS

2. Test results

Assuming that constant concentration of sulfur causes suitable turbidity of solution, the reaction rate is inversely proportionate to the time given reaction lasted.

$$v = \frac{c_s}{t}$$

where: c_s – sulfur concentration, t – time;

hence:

$$v = const(1/t)$$

Based on this formula, it is possible to calculate a relative reaction rate (v_n')

$$\begin{aligned} v_1 &= \, \text{const} \left(\frac{1}{t_1} \right) & v_1' &= 1 \\ v_2 &= \, \text{const} \left(\frac{1}{t_2} \right) & v_2' &= \frac{v_2}{v_1} = \frac{t_2}{t_1} \\ v_3 &= \, \text{const} \left(\frac{1}{t_3} \right) & v_3' &= \frac{v_3}{v_1} = \frac{t_3}{t_1} \\ &= \text{etc.} \end{aligned}$$

Nº	Volume of Na ₂ S ₂ O ₃ V ₁	Volume of solution V _c	Concentration of Na ₂ S ₂ O ₃ in solution c	Time t	Relative reaction rate v'
1.	[cm ³]	[cm ³]	[mol/dm ³]	[s]	-
 2. 3. 					
4.					

Draw a graph which shows the relation between relative reaction rate and the concentration of $Na_2S_2O_3$ in solution -v'=f(c).

POZNAN UNIVERSITY OF TECHNOLOGY INSTITUTE OF BUILDING ENGINEERING DIVISION OF BUILDING AND BUILDING MATERIALS

Graph

3. Conclusions			